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Abstract— The recent focus on virtual environments and 3D 

object scanning has highlighted the need for accurate and 

efficient methods to stitch concurrent point clouds into solid 

three-dimensional (3D) models. To address this need, we 

introduce a novel iterative approach for 3D multi-angle point 

cloud stitching using an iterative closest point (ICP) algorithm 

augmented with k-nearest neighbors (kNN). With this combined 

algorithm, our method focuses on minimizing the error between 

neighboring point clouds, allowing us to easily compute the 

necessary transformation to combine point clouds into one 

model. Thus, when given concurrent point clouds captured at 

multiple angles of the same object, our approach provides a 

single accurate 3D model. We evaluated the ability of the 

proposed framework to stitch multiple point clouds into a solid 

model by stitching a segmented model and comparing the root 

mean squared error to a standard iterative closest-point 

stitching algorithm. The experiments results shows that our 

method provides benefits in terms of efficiency and accuracy 

compared to a standard approach. 
Keywords—ICP, kNN, point-cloud stitching, 3D point 
clouds. 

I. INTRODUCTION

In recent years, advancements in computer simulations 
and virtual environments have created an ever-increasing 
need for methods to scan real objects and reconstruct them 
into accurate three-dimensional (3D) models. Generating 3D 
models using legacy modelling software is time consuming, 
complicated, and expensive [1]. In virtual environments, 
reconstructing real objects significantly reduces the time 
required to create realistic 3D objects. Additionally, accurate 
scans of real objects also open new possibilities for computer-
aided or entirely digitized methods for applications such as 
skin health diagnoses and manufacturing defect recognition. 
However, in all applications, easy and rapid object scanning 
is vital, as is the accuracy of the resulting 3D model. 

One of the most common methods of 3D object scanning 
is using 3D laser scanners, which can accurately capture 
multiple angles of the same object, allowing a user to easily 
reconstruct an accurate 3D model. However, laser scanners 
are economically prohibitive and unwieldy, often requiring 
multiple people to successfully operate and scan objects [30]. 

More cost-effective and portable methods of 3D object 
scanning can be found in visual scanning using structured 
light methods and depth cameras. However, visual and depth 
camera methods do not automatically combine scanned 
objects into complete and solid 3D models. Instead, these 
methods return discrete point clouds from each angle 
captured on a target object. 

It is necessary to stitch multiple point clouds to retrieve 
solid 3D models from discrete, segmented point clouds. 
Although this process can be performed manually, it is 
extremely time-consuming, and automatic methods for point 
cloud stitching would greatly improve the usability of both 
visual and depth camera-based scanning methods. Several 
methods [3][6] to stitch point clouds exist in the literature, but 
there are several issues with the existing methods: 1) methods 
require modified or transformed input data, adding additional 
complexity and time to the algorithm, and 2) methods are 
prone to high error or inaccuracy in stitching methods. As 
such, there is still room for fast and accurate methods for 
creating a 3D model from a series of concurrent point clouds. 

A common approach for aligning neighboring point 
clouds is the iterative closest point (ICP) algorithm. The 
functional step is to determine the transformation that best 
matches the point clouds with a given correspondence [5]. 
ICP implicitly assumes that there is a good overlap between 
the source and target point clouds so that stitching can easily 
converge [3][4]. While simple and effective, ICP presents the 
following practical shortcomings owing to the alignment 
assumption: (1) high computational cost [15]; (2) it is prone 
to converge to local minima [14]; and (3) it is easily affected 
by outliers [16]. To address these limitations, researchers 
have devoted efforts to modifying the standard ICP 
algorithm, leading to several ICP variants in a range of 
applications in medical fields [19], remote sensing [12], 
autonomous driving [12][7], robotics [20], and aviation [21]. 

Among the modified approaches, one of the simpler yet 
effective modifications of ICP is to weigh point pairs to 
modify their impact on the transformation or to reject 
unmatched pairs outright [17]. Another method of Hybrid 
ICP [23] is proposed which optimizes the data association 
method and error metric based on the live image of an object 
and the current ICP estimate [23]. An alternative method to 
improve the registration of ICP is by introducing a point-to-



plane metric that utilizes the surface information of the point 
sets to improve registration accuracy [16]. Another line of 
based on identified features. For example, Zong et al. applied 
an improved scale-invariant feature transform (SIFT) method 
to help match points [8]. However, as in [2][10], this method 
requires data manipulation to convert the 3D data into 2D 
images. Once the point cloud is converted, the 2D images are 
stitched together before being converted back. In this 
approach, the conversion to and from 2D has a high 
computational cost, and information such as the normal 
directions and colors of points can be lost in the conversion. 
Furthermore, this conversion may not always be possible 
because of different data formats [10]. Therefore, methods 
that operate directly on the 3D point cloud are desirable to 
avoid the afore mentioned issues.  

Motivated by the issue of automatic point cloud stitching 
and recent advancements in machine learning methods, this 
study presents an efficient algorithm for stitching concurrent 
point clouds into single 3D models. Specifically, our 
proposed algorithm augments the iterative closest point (ICP) 
stitching algorithm with k-nearest-neighbors (kNN) 
clustering. Using this combined approach, our method 
iteratively minimizes the error between two neighboring 
point clouds, locating the corresponding points on both point 
clouds to combine and create a solid 3D model. Compared to 
a standard ICP algorithm, the addition of kNN allows us to 
obtain a more accurate matching between two neighboring 
point clouds. 

Thus, with our proposed algorithm, this paper makes the 
following contributions: 

1. We propose a general-purpose iterative algorithm
for creating a solid 3D model from multiple
concurrent point clouds scanned from the same
object.

2. Our proposed method augments an iterative closest-
point algorithm with k-nearest neighbors, creating a
method that achieves high efficiency and reduced
error compared to standard algorithms.

3. The proposed method operates directly on 3D point
clouds, avoiding computationally expensive
transformations.

The remainder of this paper is organized as follows. 
Section II outlines the proposed point-cloud stitching 
algorithm. Section III provides the experimental results of our 
method compared to the standard ICP, followed by the 
conclusions in Section IV. 

II. PROPOSED STITCHING ALGORITHM

As stated, our proposed algorithm is a combination of the 
iterative closest point (ICP) algorithm and k-nearest 
neighbor (kNN) similarity measures. Fig. 1 shows a 
flowchart of the proposed method. The fundamentals of ICP 
are first presented in Section II.A, followed by the proposed 
kNN augmentation in Section II.B.  

A. Fundamentals of Interactive Closest Point Algorithms

When two point clouds are given, target point cloud � and
source point cloud �, the optimal alignment between them

can be computed directly. Equation 1 shows the mathematical 
solution for determining the transformation �  and rotation
matrix � required to transform and rotate � to �.���, 	
 � ∑ ∑ 
�� � �� ∙ �� � ��
�����������  (1) 

where |�| � �� and |�| � � .
R= "#�� #�� #�$#�� #�� #�$#$� #$� #$$% is the rotation matrix that describes the

Euclidian space transformation used to rotate � to match �
(as closely as possible). � � &�', �( , �)*+  is the transformation

matrix which describes the Euclidean space transformation 
used to move the center of mass of � to the center of mass of�. Finally, there is a set of paired points Ρ � -��� , ���|�� ∈�, �� ∈ �/ and |Ρ| � 0 is the number of points in 1.

Fig. 1. Workflow of stitching Algorithm 

However, this approach makes several assumptions. First, 
it is assumed that there exists a set of paired points 1 that
define the corresponding points in both point clouds. This 
assumption is valid when aligning two known or identical 
point clouds because the paired points are either already 
known or are easy to determine. With point clouds captured 
from real objects, pairing is not known. The iterative closest 
point (ICP) approach is a means by which this pairing can be 
guessed to align two unknown point clouds. 



ICP works through two basic steps. First, the paired points 
are estimated. This estimation is typically performed by using 
a similarity or distance metric. For example, for each point in �, the paired point is the nearest point in �. Using these pairs
and Equation 1, a sub-optimal rotation and translation can
then be computed, and point cloud � can be shifted in the
direction of point cloud �. Finally, the approach is iterated
until some stopping criteria are reached, typically minimum
error, maximum iterations, or minimum shift per iteration.
Through this approach, two unknown point clouds can be
aligned without knowledge of the paired points. However,
ICP can still run into issues owing to the lack of properly
matched points, such as slow convergence times, incorrect
final transformations, or converging upon local minima
instead of global minima.

B. Integration of ICP with kNN

Owing to the aforementioned issues with the basic ICP,
we propose augmenting the standard algorithm with kNN. 
Rather than estimating a single pair for all points, the 

proposed method finds a set of 2 candidate points. For each

point in � , we first find the 2  nearest points in �  using
Euclidean distance, as shown in Equation 2. We can then 

consider all 2 points in � as paired points to a single point in� and add 2 pairs to the set of paired points.

3� � 45������
���
��� �2


Algorithm 1 Full Stitching Algorithm 

Inputs:  Source point cloud �
Target point cloud �78�9##:#

1: Initialize 2 � ;|�|
2: While � > 78�9##:# do:

a. Call Algorithm 2 to get list of paired points1
b. Compute � and � using Equation 1, and get

total error �
c. Transform � � � ∗ � � �

3: End while 
4: Transform � � � ∗ � � �
5: Combine > � � � �
6: Apply a box filter on >, merge all nearby points into a

single point, and average color and normal 
information. 

7: Return merged point cloud >
As the proposed method adds a much larger number of 

pairs to the paired list than the standard, we can also remove 
any outlier pairs. To remove outliers, we discarded any point 
pairs with distances above a certain threshold, typically to 

reduce the number of pairs to ��. Algorithm 1 formalizes the
entire process, and Algorithm 2 shows a single iteration of 
ICP with kNN. The proposed approach helps in making the 

experiments robust to noise and prevent convergence on local 
minima due to identifying best matching pair by considering 
more than one point. Furthermore, the method helps in 
optimizing the speed as we displace the cloud towards 
optimal location per iteration compared to a standard 
approach. 

The final important aspect of the algorithm is selecting a 

value for 2 . When the value is too large, the number of
additional pairs added to the pair list becomes very large, 

slowing the convergence of the algorithm. However, as 2
approaches 1, the algorithm behaves in a similar manner to 
the standard ICP. Through our testing, we determined that 2 � ;|�|, where |�| is the number of points in �, provides a

balanced value for 2 with consistent performance throughout
our testing. 

Algorithm 2 One Iteration of ICP with kNN 

Inputs: Source point cloud �
Target point cloud �
Neighbor amount 2

1: Initialize distance set ? � ∅ and pair set 1 � ∅
2: For each point �� ∈ � do:

a. For each point �� ∈ � do:

i. Compute 3� from equation 2 as the

distance between �� and ��
ii. Append 3� → ?

b. End for

c. Sort ? by distance

d. For �� ∈ � corresponding to the 2 smallest

values in ? do:

i. Append ��� , ��� → 1
e. End for

3: End for 

4: From 1, remove highest-distance pairs until |1| � |�|
to remove outlier pairs. 

5: Return 1
III. EXPERIMENTS AND DISCUSSIONS

To fully understand the proposed approach, a series of 
experiments was conducted to evaluate its significance with 
respect to the basic ICP.  

Our experimental setup consisted of an Intel RealSense 
F200 RGB-D camera placed on the same flat surface as the 
target object. As shown in Fig. 2, the camera was kept still, 
while the object was gradually displaced following the 
marked angle lines underneath. The data were then captured 
and collected using our project-camera calibration system 
[11].  

Considering that the raw point cloud data have large 
number of points which are prone to noise, ungrouped points, 
and outliers, both downsampling [13] and denoising are used 
to preprocess the data. For downsampling, a box grid filter 
[18] is applied, where all points that fall within the box are
merged into a single point, with the final color value and



normal vector of the point obtained by averaging all other 
points. In our case, downsampling was applied through the 
pcdownsample function in MATLAB [22]. Denoising was 
then performed using MATLAB’s pcdenoise function [9]. 
Finally, the root-mean-square error (RMSE) for the 
transformation defined below in Equation 3 was considered 
as the evaluation criterion. 

Fig. 2. Experimental Setup 

RMSE � 4∑ ∑ 
F����
 � FGH ���

�IJ���K��� ∑ 0�K��� �3

where F����
  is the coordinate of point ��  in the source

cloud, and FGH ���
  is the corresponding coordinate

transformed from the reference cloud using the derived 
parameters R and t.  The total number of points considered 
was the sum of the points that could be paired in M clouds. 

In the experiment, three busts of various features were 
used to populate sets of point clouds. First, the proposed kNN-
ICP method was used to reconstruct them, as shown in Fig. 
3. Second, the same datasets are fed into the basic ICP. The
average of the iterations and RMSE were then calculated and

compared between the two algorithms. As shown in Table 
I, the proposed method outperformed the basic ICP. 

TABLE  I. COMPARISON WITH RMSE OF STANDARD ICP 

AND MODIFIED ICP AND KN 

Object Attribute Average 

Iteration 

per 

Cloud 

Root 

Mean 

square 

Error 

ICP 18 3.6987 

ICP with 

kNN 

16 1.9403 

ICP 20 3.9789 

ICP with 

kNN 

14 2.4637 

ICP 25 4.9372 

ICP with 

kNN 

20 2.4738 

(a)



(b)

(c)

Fig. 3. (a) Stitching Result 1. (b) Stitching Result 2. (c) Stitching Result 3 

IV. CONCLUSION

Recent trends in 3D modelling have highlighted the 
need for more accessible methods for stitching real objects 
into 3D models. To address the need for more accurate and 
efficient stitching methods, this paper proposes an 
incremental approach for 3D multi-angle point cloud 
stitching using an iterative closest point algorithm augmented 
with k-nearest-neighbors. From our experimental results, we 
first visually demonstrate the models obtained by stitching 
together a series of neighboring point clouds. Compared to 
other stitching methods, our proposed algorithm has reduced 
error and computational intensity because it does not need to 
reformat the data and instead operates directly on the 3D 
point cloud. Furthermore, our quantitative results 
demonstrate that kNN augmentation leads to a lower root-
mean-squared error compared to the standard iterative closest 
point algorithm. Overall, the proposed method is efficient, 
accurate, and robust for stitching 3D point clouds.  Future 
work will focus on implementing and testing algorithms for 
less textured and flat surfaces. 
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